

6111 Southfront Rd, Suite E, Livermore CA 94551 • Phone (925) 292-5161 • Fax (925) 454 –9487 • www.labsmith.com • info@labsmith.com

LabSmith	uDevice	Electrical	Interface	

Overview

LabSmith has developed a family of devices (uDevices) comprising active devices, including syringe

pumps and valves, and sensors for modular microfluidics and miniature lab automation applications.

These devices are designed to facilitate low-time-resolution device-function sequencing via external

control, e.g., via a computer that is issuing commands to and polling for data from the devices. Such

commands reach the uDevices via a two-line I2C interface (SCL and SDA). This I2C interface conforms to

the physical-layer standards set by the Philips Corporation for 100 kb/s data transfer.

Electrical interface

Figure 1 shows a diagram of the connector pinout on the uDevice side and the 3M part number

(151220-7422-TB) used on the uDevice. Power for uDevices must be supplied externally, including 5V

(up to 1 A) and 12 V (up to 2A). A typical uDevice draws far less than the rated power. E.g., a syringe

pump draws a maximum of ~200 mA from the 12 V supply and < 50 mA from the 5 V supply. The 5 V

supply should not droop below 4 V or rise above 5.5 V. The 12 V supply should not droop below 10 V or

rise above 13.6 V. The common current return line or ground is labeled “GND.” For reduced analog

sensing noise, a separate analog ground line (AGND) that draws little current is used. In the driving

circuitry, this line should be connected to ground (0 V) in a way that current drawn on the GND lines do

not couple offset voltages to the AGND line.

The electrical interface between uDevices is designed to support enhanced time resolution sequencing

and controller-less sequencing via an array of eight shared digital signaling lines (D0—D7). These digital

lines may be used for handshaking, signaling, or timing. In addition, a signal line “INT” has the ability to

generate an interrupt for event-driven functions. A signal line “SYNC” can provide for high-accuracy

time synchronization (better than ~1%) of all uDevices. If used by the uDevice firmware, this pin may be

driven by a 32.768 kHz TTL oscillator. Current standard uDevice firmware versions do not use this

synchronization line, however it is anticipated that future firmware versions will.

Four lines (D0, D1, D2, and D3) can be configured in firmware as analog sensing lines over the range 0 to

5 V. These lines are intended to be used in an application specific manner, such as to control the flow

rate of a syringe pump uDevice via the analog output of a uDevice pressure sensor or external

potentiometer, etc.

6111 Southfront Rd, Suite E, Livermore CA 94551 • Phone (925) 292-5161 • Fax (925) 454 –9487 • www.labsmith.com • info@labsmith.com

Figure 1 uDevice-side interface connector pinout.

The uDevices employ 18F-series PIC microcontrollers from Microchip. The uDevice firmware supports

firmware updates over the I2C bus. The microcontrollers contain ~512 bytes of unused RAM, ~4k of

unused instructions, and ~128 bytes of unused EEPROM space to support application-specific code.

 I2C Packet Protocol

Each uDevice has a 7-bit address between 0x01 and 0x6F. These are saved in EEPROM and can be

changed by commands issued over the I2C bus.

There are “Write” packets, in which a block of data or command is transmitted to a uDevice, and “Read”

packets, in which a block of data is transmitted from a uDevice. A uDevice loads an internal buffer with

the response to a “Write packet.” The data in this buffer is transmitted from the uDevice during a

“Read” packet. For this reason, a “Write packet” should always precede a “Read” packet. It is not

necessary to issue a “Read” packet after every “Write” packet, however the response data from the

previous “Write” will be overwritten and lost. It is good practice always to read the response to “Write”

packets, since the response may indicate an error.

Multiple-byte integers are transmitted with the least-significant byte first.

Write Packets

To issue a packet to a device, begin with an idle I2C bus (SDA high, SCL high, all devices unaddressed).

You may ensure this state exists by executing a “Stop” or P sequence according to the I2C spec. Begin

the packet with an I2C “Start” sequence (S). The first transmitted byte is the I2C address, comprising

the device address bit shifted to the left with a zero inserted in the LSB position. In accordance with the

I2C spec, this initiates a write to a slave, in this case the uDevice. Next the master transmits the number

of bytes (Cnt) that follow in the packet. Next the master transmits a one byte command (Cmd). If the

command calls for data, the master transmits the data, finally the master transmits a Chksum and ends

the packet with a stop sequence (P):

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

151220-7422-TB

5V

12V

5V

12V

GND

D0

D3

D2

D1

INT

SCL

D4

SDA

SYNC

D7

D6

D5 AGND

6111 Southfront Rd, Suite E, Livermore CA 94551 • Phone (925) 292-5161 • Fax (925) 454 –9487 • www.labsmith.com • info@labsmith.com

Write packet sequence:

S / Addr<<1 | 0 <Ack>/ Cnt <Ack> / Cmd <Ack> /{optional data block

Data1/<Ack>…DataN<Ack>}/Chksum<Ack>/ P

The <Ack>s are conditions where the uDevice holds the SDA line low during a 9
th

 SCL pulse that follows

the transmission of a byte. If a uDevice does not issue an <Ack> the packet should be aborted by

issuing a P and retry-ed from the start. Under normal operation, the only time an <Ack> will not

appear is when no device matches the address byte.

The uDevices employ clock stretching according to the I2C spec, in which they hold the SCL line low

following an <Ack> until the received byte is processed. The master must wait for clock stretches

following an <Ack> before attempting to transmit the next byte. The logic may look like this:

 Release SCL (allow it to be pulled up by resistor)

 While (SCL is low) wait

 …

The checksum is calculated by subtracting all the previous bytes in the packet from zero and truncating

the result to 8 bits, e.g., in the following function:

void FormatCommand(unsigned char Addr, unsigned char*& pPkt, const unsigned

char* pData, unsigned int dataLength)

{

 unsigned char Chksum = 0;

 Chksum -= *(pPkt++) = Addr<<1;

 Chksum -= *(pPkt++) = (BYTE)(dataLength + 1);//Cnt

 unsigned* end = pPkt+dataLength;

 while (pPkt < end)

 Chksum -= *(pPkt++) = *(pData++);

 *(pPkt++) = Chksum;

}

Read Packets

Begin with the bus idle. Master perform a start sequence, followed by transmitting the slave (uDevice)

address bit shifted to the left with a ‘1’ inserted into the LSB. Addressed device shall <Ack> on 9
th

 clock

pulse.

Next the master transmits SCL pulses and shifts the SDA state in on the rising edge of the clock pulse

according to the I2C spec. The uDevice controls the SDA line for the first 8 clock pulses. The master

device holds SDA low during the 9
th

 clock pulse, in other words, the master generates the

acknowledgement <MAck>. The first byte is a byte-sized status token (Tok) having one of two valid

values: 0xAA means command executed; 0xEE means command not executed. A command not

executed usually indicates a checksum or other command packet error.

6111 Southfront Rd, Suite E, Livermore CA 94551 • Phone (925) 292-5161 • Fax (925) 454 –9487 • www.labsmith.com • info@labsmith.com

The master continues by a repeated process of transmitting SCL pulses and shifting bits in from the slave

for 8 pulses and producing a <MAck> on the following pulse to read the balance of the packet. The next

byte is the count (RCnt) of bytes that follow, including the checksum. If RCnt is zero, then the packet

contains no checksum or data, only the status symbol (0xAA or 0xEE) and the packet is complete. If

RCnt is greater than zero, the master should repeat shifting RCnt bytes. The last byte is a checksum

such that the sum of the received bytes following (not including) the status token is zero. The master

terminates the packet by issuing a stop sequence (P).

Read packet sequence:

S / Addr<<1 | 1 <Ack>/ Tok <MAck> / RCnt <MAck> /{data block

Data1/<MAck>…DataN<MAck>}/Chksum<MAck>/ P

If RCnt > 0, then N, the number of response data bytes is RCnt – 1.

Commands

As of the current firmware version, the commands are

Command Cmd value Target Args Buffered data

(blank means

ack or nak

only)

CB_GETDATABLOCK 0x00 uDevice None Device

dependent

CB_PING 0x01 uDevice None

CB_SETDEVADDR 0x02 uDevice 1-byte new

address

CB_GETVERSION 0x03 uDevice None 2-byte

firmware

version

2-byte

bootloader

version

2-byte

hardware

version

RESERVED 0x04 SPS01

CB_RESET 0x05 uDevice None

CB_STOP 0x06 uDevice None

CS_SETPERIOD 0x07 SPS01 3-byte period

CV_SETVALVES 0x07 4VM01

CS_MOVETOPOS 0x08 SPS01 2-byte

position

CS_GETMODE 0x09 SPS01 None

CB_SETNAME 0x0A uDevice 16 char

uDevice

“name”

CB_GETNAME 0x0B uDevice None 16 char

uDevice

“name”

6111 Southfront Rd, Suite E, Livermore CA 94551 • Phone (925) 292-5161 • Fax (925) 454 –9487 • www.labsmith.com • info@labsmith.com

RESERVED 0x0C SPS01

CS_SETPOWER 0x0D SPS01 1-byte power

setting

between 0x60

and 0xC0

RESERVED 0x0E uDevice

RESERVED 0x0F SPS01

RESERVED 0x10 SPS01

RESERVED 0x11 SPS01

CB_SETCAL 0x12 uDevice Device

dependent

CB_AUTOCAL 0x13 uDevice None

CB_GETCAL 0x14 uDevice None Device

dependent

CS_SETDIAMETER 0x15 SPS01 2-byte

unsigned

integer

CS_GETDIAMETER 0x16 SPS01 None 2-byte

unsigned

integer

RESERVED 0x17 SPS01

CS_GETFACTORYCAL 0x18 SPS01 2-byte

unsigned

integer

CB_GETSERIALNUMBER 0x19 uDevice 2-byte

“length”

followed by

“length”

bytes

CB_GETSTATUS 0x1A uDevice None 1-byte motion

status flags

2-byte

position

2-byte

micropulse

count

CB_GETRAMBLOCK 0x1E uDevice 1-byte RAM

address

1-byte block

count (16-

bytes

maximum)

Requested

block of RAM

CB_SETRAMBLOCK 0x1F uDevice 1-byte RAM

address

1-byte block

“cnt” (<=16

bytes)

“cnt” bytes

of data

RESERVED 0xB5 uDevice

6111 Southfront Rd, Suite E, Livermore CA 94551 • Phone (925) 292-5161 • Fax (925) 454 –9487 • www.labsmith.com • info@labsmith.com

uPS Pressure Sensor Pinout

Pin uPS Pressure Sensor

1 Digital Data (reserved)

2 Sensor PWR (3.3-5 V, low noise recommended)

3 Pressure out positive (positive leg of sensing bridge)

4 Pressure out negative (negative leg of sensing bridge)

5 Thermistor sense (ground referenced temperature-indicating,
nonlinear signal)

6 Analog GND

The Pressure out negative and positive lie approximately at half the Sensor PWR voltage. The negative

voltage decreases with increasing pressure. The positive voltage increases with increasing pressure. We

recommend using differential amplification and A/D conversion. Temperature compensation is

imperative where accuracy is important.

6 5 4 3 2 1

6111 Southfront Rd, Suite E, Livermore CA 94551 • Phone (925) 292-5161 • Fax (925) 454 –9487 • www.labsmith.com • info@labsmith.com

Additional Information

Could you give me more information on the serial commands (RS-232) to

interface to the electrical interface (controller box)?

The only difference in the packet that goes over the serial and the i2c

is the serial package starts with a "%" sign and you don't need to poll

the devices for a response. The EIB automatically read the device and

forwards the response back over the serial port.

I2C Example:

S / Addr<<1 | 1 <Ack>/ Tok <MAck> / RCnt <MAck> /{data block

Data1/<MAck>.DataN<MAck>}/Chksum<MAck>/ P

RS232 Example (computer to device):

'%' / Addr<<1 | 1 / Tok / RCnt /{data block Data1/.DataN}/Chksum

RS232 Example Response:

0xAA / 0x00

I’m not getting the pic to relay my commands. What serial port
configuration is correct? I'm using 57600, 8,n,1, no flow control.

COM light on the EIB flashes, but I get no corresponding sda/scl

toggles going out to the pump when I send a "%".

Make sure the packet is sent as a single block (i.e., use one serial

port block write to send a packet). There is a timeout in the packet

receive routine in the EIB to help prevent hangs and permanent

alignment errors. You have some inter-byte time, but you will not be

able to step through byte writes will debugging, etc.

The problem may be that you included the token '%' in your calculation

of the checksum. You should be receiving a Nak 0xEE 0x00 back from the

EIB over the com port because the checksum is bad.

The correct checksum should be 256 - 2 (destination = device 1) - 26

(command is GETSTATUS) = 228.

I hope this helps. Internally, here is the routine we use to format

our outgoing packets. The calling function sets up the data payload at

pdata and the length of the data payload in length and provides a

buffer pd for the outgoing data (in this implementation, the function

advances the buffer, but that's not important. What's important is the

calculation of the checksum etc.

6111 Southfront Rd, Suite E, Livermore CA 94551 • Phone (925) 292-5161 • Fax (925) 454 –9487 • www.labsmith.com • info@labsmith.com

void CCommand::FormatCommand(BYTE dest, BYTE*& pd, int& i, const BYTE*

pData, DWORD length) {

 BYTE checksum = 0;

 BYTE* pStart = pd;

 *(pd++) = '%'; //first byte is the header token. Note that the

header is not included in the checksum.

 //this is only used as a

packet-alignment indication for the EIB and is stripped from the

 //packet before the EIB forwards it over

the I2C bus.

 checksum -= *(pd++) = dest<<1; //next byte is the destination

address * 2

 checksum -= *(pd++) = (BYTE)(length + 1); //next byte is the

length of bytes to follow (+1 for checksum)

 BYTE* end = pd+length;

 while (pd < end)

//memcpy with checksum update

 checksum -= *(pd++) = *(pData++);

 *(pd++) = checksum;

//now add the checksum.

 i = pd - pStart; //count of bytes in formatted packet

 //Now you should write the packet of i bytes starting at pStart

to the serial port.

}

How would I specify/query the flow rate that my movement would occur

at?

The conversions from volume and flow-rate to counts are usually done in

the SDK. I included a few critical functions below. Note that the

implementation details are subject to change. Note that the

CCommand(...) constructor calls the FormatCommand function I sent you

previously. The second arg is the data payload and the third arg is

the length of the data payload.

#define USYR_ENCODER_SIZE 4096//this is changing in a future firmware

release to 65536 const double CSyringe::m_dPositionScale = 13.0; //mm

of fictitious full stroke.

 //can get alternatively read this from SPS01

#define CS_MAX_PERIOD 655350 //Clock cycles between micro

steps

#define CS_MIN_PERIOD 108

#define CS_CLOCK_FREQ 41943040/32*44.59 //counts/second

bool CSyringe::CmdMoveToVolume(double dVolume)//dVolume is in ul {

 if (m_dDiameter == 0.0) return false;

 const double coeff = 1.27324062 * USYR_ENCODER_SIZE;

 int nPos = (int)(coeff * dVolume

/(m_dDiameter*m_dDiameter*m_dPositionScale) + 0.5);

 return CmdMoveToPosition (nPos + m_nOutStop); }

double CSyringe::GetVolumeFromPos(int pos)const {

6111 Southfront Rd, Suite E, Livermore CA 94551 • Phone (925) 292-5161 • Fax (925) 454 –9487 • www.labsmith.com • info@labsmith.com

 const double coeff = 0.7853975/USYR_ENCODER_SIZE;

 return coeff * m_dDiameter*m_dDiameter * m_dPositionScale * (pos-

m_nOutStop); }

#define CB_GETCAL 0x14

bool CSyringe::CmdGetCal()//need to call this to get m_nOutStop.

Usually only once during // initialization {

 BYTE command[12] ;

 BYTE *pc = &command[0] ;

 if(!m_pInterface) return false;

 *(pc++) = BYTE(CB_GETCAL) ;

 CCommand* pCommand = new CCommand(m_nAddress, command, 1,

"Reading Syringe End Points...") ;

 bool retval = m_pInterface->DoCommand(pCommand) ;

 if(retval)

 {

 short int nOutStop,nInStop;

 BYTE* pd = &pCommand->m_pResponse[2] ;

 nOutStop = *(pd++) ;

 nOutStop |= *(pd++)<<8 ;

 nInStop = *(pd++) ;

 nInStop |= *(pd++)<<8 ;

 m_nInStop = nInStop; //copy over atomically to prevent

multithreading issues

 m_nOutStop = nOutStop;

 }

 else

 {

 //don't change the previous cal values

 }

 delete(pCommand) ;

 return retval;

}

#define CS_SETPERIOD 0x07

bool CSyringe::CmdSetSpeed(double dSpeed) //dSpeed is flow rate in

ul/min {

 if (m_dDiameter <= 0.0) return false;

 if (!m_pInterface) return false;

 const double cSpeed = (CS_ACTUATION_DIST * CS_CLOCK_FREQ *

0.04908738521234);

 int nPeriod = (int)(cSpeed * m_dDiameter * m_dDiameter / dSpeed

+ 0.5);

 int maxper = 0xFFFFFF;

6111 Southfront Rd, Suite E, Livermore CA 94551 • Phone (925) 292-5161 • Fax (925) 454 –9487 • www.labsmith.com • info@labsmith.com

 if (nPeriod < CS_MIN_PERIOD) nPeriod = CS_MIN_PERIOD;

 else if (nPeriod > maxper) nPeriod = maxper ;

 BYTE command[12];

 BYTE* pc = &command[0];

 *(pc++) = BYTE(CS_SETPERIOD);

 *(pc++) = nPeriod&0xFF;

 *(pc++) = (nPeriod>>8)&0xFF;

 *(pc++) = (nPeriod>>16)&0xFF;

 CCommand* pCommand = new CCommand(m_nAddress,command, 4, "Setting

speed...");

 bool retval = m_pInterface->DoCommand(pCommand);

 delete pCommand;

 return retval;

}

What is CS_ACTUATION_DIST?

#define CS_ACTUATION_DIST 0.02 //mm/step

What are the standard syringe sizes for the SPS01?

 m_dStdDia[0] = 0.729;

 m_dStdVol[0] = 4.0;

 m_csName[0]= _T("4 ul");

 m_dStdDia[1] = 1.031;

 m_dStdVol[1] = 8.0;

 m_csName[1] = _T("8 ul");

 m_dStdDia[2] = 1.458;

 m_dStdVol[2] = 20.0;

 m_csName[2] = _T("20 ul");

 m_dStdDia[3] = 2.304;

 m_dStdVol[3] = 40.0;

 m_csName[3] = _T("40 ul");

 m_dStdDia[4] = 3.256;

 m_dStdVol[4] = 80.0;

 m_csName[4] = _T("80 ul");

How do I read/interpret sensor measurements from the 4AM?

You retrieve the data from the 4AM via sending the CM_GETSTATUS command. The

4AM returns one status byte followed by four sets of 3-byte integers that

contain the readings, followed by four bytes that describe the regulation

status of each sensor. The 4AM can sample a variety of different sensors,

6111 Southfront Rd, Suite E, Livermore CA 94551 • Phone (925) 292-5161 • Fax (925) 454 –9487 • www.labsmith.com • info@labsmith.com

each having its own scale factor between 4AM-reported readings and standard

units. Here is sample code for polling the status and interpreting the

answer:

bool C4AM::CmdGetStatus()

{

 if (!IsOnline()) return false;

 //this is an efficient state poll.

 BYTE command[12];

 BYTE *pc = &command[0];

 *pc = BYTE(CB_GETSTATUS);

 CCommand* pCommand = m_pInterface->LockCommand();

 pCommand->Create(m_nAddress, command, 1, _T("Reading 4AM Status..."));

 pCommand->SetTimeout(500);

 bool retval = m_pInterface->DoCommand();

 if (retval)

 {

 unsigned char* pdata = &pCommand->m_pResponse[2];

 m_Status = *(pdata++);

 m_bIdle = ((m_Status&0x80) == 0);

 if (m_pS1)

 m_pS1->SetRawStatus(pdata);

 pdata += 3;

 if (m_pS2)

 m_pS2->SetRawStatus(pdata);

 pdata += 3;

 if (m_pS3)

 m_pS3->SetRawStatus(pdata);

 pdata += 3;

 if (m_pS4)

 m_pS4->SetRawStatus(pdata);

 pdata += 3;

 bool bDone = true;

 //next come 4 bytes of reg status

 BYTE bStatus = *(pdata++);

 if (m_pS1)

 {

 m_pS1->SetRegStatus(bStatus);

 }

 bStatus = *(pdata++);

 if (m_pS2)

 {

 m_pS2->SetRegStatus(bStatus);

 }

 bStatus = *(pdata++);

 if (m_pS3)

 {

 m_pS3->SetRegStatus(bStatus);

 }

6111 Southfront Rd, Suite E, Livermore CA 94551 • Phone (925) 292-5161 • Fax (925) 454 –9487 • www.labsmith.com • info@labsmith.com

 bStatus = *(pdata++);

 if (m_pS4)

 {

 m_pS4->SetRegStatus(bStatus);

 }

 }

 m_pInterface->UnlockCommand();

 return retval;

}

void CSensor::SetRawStatus(unsigned char* pdata)

{

 int i = 0;

 i |= *(pdata++);

 i |= *(pdata++)<<8;

 char t = *(pdata++);

 i |= t<<16;

 if (t &0x80)//convert from 24-bit signed int to 32-bit signed int

 i |= 0xFF000000;

 double dStdValue = ConvertDeviceUnitsToStdReading(i);

 double dStdValue = p*m_dGainScale;

 //dStdValue is in kPa. From here convert to desired units

}

double CSensor::ConvertDeviceUnitsToStdReading(int r)const

{

const double igscale = 1.0/(256.0*256.0*128.0);

 double rat = double(r);

 rat *= igscale;

 rat *= GetPressureRange_kPa();//returns full-scale pressure in kPa,

// e.g., 250kPa sensor returns 250.0;

 return rat;

}

