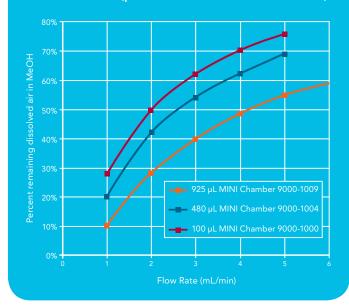
# Systec<sup>®</sup> MINI Vacuum Degassing Chamber

The Systec MINI Vacuum Degassing Chamber was designed to be easy to prime, and is configured with a Systec AF<sup>™</sup> degassing membrane to provide maximum degassing capacity with the absolute minimum internal volume (<3% of PTFE designs with comparable degassing capacity).

- Ultra-high degassing efficiency
- Low volume
- Easy primingt

## Single Lumen Design


The Single lumen design ensures consistent degassing by avoiding variable flow issues that can be problematic in multi-lumen designs.

## **Customization Options**

Custom degassing capacities, material choices, and metal free designs are available for OEM applications.



Degassing Efficiency: Residual air for Systec Mini-chambers (percent dissolved air vs. flow rate).



Plot shows remaining dissolved air in methanol using a selection of Systec Mini-Chambers\*. The range of chambers and specifications offered provide ample solutions for system designs.

\* Water and Methanol mixtures between 30% and 70% methanol will outgas when more than 38% dissolved air remains in each of the solvents. Other water and organic mobile phases being mixed using a low pressure gradient system will undergo similar outgassing.



# **General Specifications**

#### **Degassing Channel Tubing:**

- Systec AF<sup>1</sup>
- **Degassing Channel Pressure Rating:**
- ▶ 70 PSIG (testing pressure)

#### Wetted Materials:

▶ Systec AF, PEEK, and Glass-filled PTFE or Glass-filled PPS and FEP depending on application

#### Vacuum Housing Material:

- ► Glass-filled PPS (Polyphenylene Sulfide)
- Hardware Material:
- ► Stainless Steel or PPS

#### **Liquid Connection:**

▶ 1/4-28 UNF threaded flat-bottom port

#### Vacuum Connection:

Dissolved gases are actively

liquid stream by vacuum via the Systec AF membrane.

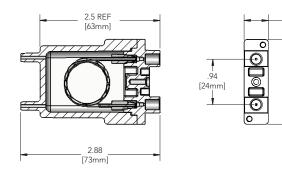
removed from a flowing

Barb-type fitting for 1.57mm (0.062") ID tubing

To Vacuum To Vacuum

Systec AF

Degassed

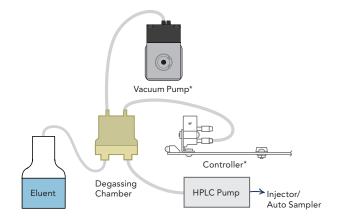

Eluent Out

Controller

Pump

Eluent In

# **Overall Dimensions**




.50 REF

[13mm]

1.75 REF

[44mm]



Typical Degasser Implementation \*See Systec® ZHCR® Vacuum Pump and Controller Product Data Sheet for more information.

#### Available Configurations<sup>A,B</sup>

Dissolved

Gas

| Systec<br>Part Number | Application    | Channel<br>Volume (µL) | Max HPLC Gradient<br>Flow Capability <sup>c</sup> (mL/min) | Pressure Drop <sup>D</sup><br>(kPa/mL/min) | Degassing Flow<br>Path ID (mm/in) |
|-----------------------|----------------|------------------------|------------------------------------------------------------|--------------------------------------------|-----------------------------------|
| 9000-1000             | Capillary      | 100                    | 0.4                                                        | 0.04                                       | 1.14/0.045                        |
| 9000-1004             | Analytical     | 480                    | 2.0                                                        | 0.18                                       | 1.14/0.045                        |
| 9000-1006             | Analytical     | 670                    | 2.8                                                        | 0.25                                       | 1.14/0.045                        |
| 9000-1009             | Analytical     | 925                    | 4.0                                                        | 0.36                                       | 1.14/0.045                        |
| 9000-1184             | Analytical/GPC | 480                    | 2.0                                                        | 0.18                                       | 1.14/0.045                        |

A. Custom configurations are available. Consult the factory for your specific application. B. The standard MINI degassing chamber is not recommended for GPC applications (room temperature or heated), nor for use with HFIP (hexafluoroisopropanol). We offer a special GPC "hardened" version. Please consult the factory for details. C. The flow rates given are for a gradient mixture of SOS 00 HO/H/JO, with a typical low pressure gradient mixing valve. Higher flow rates are possible with high pressure mixing. D. Estimated tubing pressure per unit change in flow assuming laminar flow with a viscosity of 1.0 cP.

Systec® and ZHCR® are registered trademarks of of IDEX Health and Science LLC. Systec. AF® is a trademark of of IDEX Health and Science LLC. U.S. Patents 5:400,384; 6,248,157 and 6,494,938. ©2009 IDEX Health & Science LLC

SY2-A4E:500-03/2009

